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bstract

A three-layer artificial neural network (ANN) model was developed to predict the efficiency of Pb(II) ions removal from aqueous solution by
ntep pistachio (Pistacia Vera L.) shells based on 66 experimental sets obtained in a laboratory batch study. The effect of operational parameters

uch as adsorbent dosage, initial concentration of Pb(II) ions, initial pH, operating temperature, and contact time were studied to optimise the
onditions for maximum removal of Pb(II) ions. On the basis of batch test results, optimal operating conditions were determined to be an initial
H of 5.5, an adsorbent dosage of 1.0 g, an initial Pb(II) concentration of 30 ppm, and a temperature of 30 ◦C. Experimental results showed that a
ontact time of 45 min was generally sufficient to achieve equilibrium. After backpropagation (BP) training combined with principal component
nalysis (PCA), the ANN model was able to predict adsorption efficiency with a tangent sigmoid transfer function (tansig) at hidden layer with

1 neurons and a linear transfer function (purelin) at output layer. The Levenberg–Marquardt algorithm (LMA) was found as the best of 11 BP
lgorithms with a minimum mean squared error (MSE) of 0.000227875. The linear regression between the network outputs and the corresponding
argets were proven to be satisfactory with a correlation coefficient of about 0.936 for five model variables used in this study.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Pollution of water by toxic heavy metals through the
ischarge of industrial wastewater is particularly intractable
roblem threatening the ecosystem. Rapid industrialization has
eriously contributed to the release of toxic heavy metals to water
treams [1]. Toxic metal compounds not only contaminate sur-
ace water sources (seas, lakes, ponds and reservoirs), but also
ontaminate underground water in trace amounts by leaching
rom the soil after rain and snow [2]. Increasing concentrations
f these metals in the ecosystem constitute a severe health hazard
ue to their toxicity, accumulation and magnification throughout
he food chain.

Lead has been recognized one of the hazardous heavy metals.

ining, acid battery manufacturing, metal plating, printing, tex-

ile, photographic materials, explosive manufacturing, ceramic
nd glass industries are the main sources of lead contamination

∗ Corresponding author. Tel.: +90 212 2597070; fax: +90 212 2619041.
E-mail address: yetilmez@yildiz.edu.tr (K. Yetilmezsoy).
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3]. Moreover, lead contanimation of drinking waters is often a
esult from corrosion of lead-containing piping material [4].

Lead poisoning causes various severe health problems
n vital organs of humans, such as damage to the kidney,
iver, blood composition, nervous system, reproductive system
nd retardation in mental function. Because lead is non-
iodegradable and tends to bioaccumulate in cells of the living
rganisms, stricter environmental requirements and urgent treat-
ent solutions are needed for lead removal from water and
astewater.
In recent years, adsorption techniques have been widely

nvestigated for the removal of heavy metals from wastewaters.
dsorbent used in the adsorption processes are various materi-

ls including activated carbons prepared from some agricultural
y-products, some cellulosic wastes and their carbonisation
roducts, bituminous coal and commercial activated carbons [5].
owever, the high cost of the activation process limits the use in

astewater treatment, particularly for the needs of developing

ountries. Therefore, over the last few years number of investi-
ations have been conducted to test the low-cost adsorbents for
eavy metal ion removal.

mailto:yetilmez@yildiz.edu.tr
dx.doi.org/10.1016/j.jhazmat.2007.09.092
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Table 1
Elemental composition and some physicochemical properties of pistachio shells
used in the experiments

Component Value

Elemental composition (wt.%)
Moisture 4.22
Ash 0.2
Carbon 47.83
Hydrogen 5.32
Nitrogen 0.34
Total sulfur 0.19
Oxygena 41.9

Physicochemical property
True density (kg/m3) 770
Natural color Beige
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Environmental preservation efforts and developments in the
echnology have resulted in stringent discharge standards. To
chieve an optimum control and management, new concepts
nvolving efficient operation and design should be developed
nd understood. Hence, a high quality representative model can
rovide a favourable solution in the process control and helps to
xplain the real process performance and to develop a continuous
ontrol strategy for this type of technologies.

Because of their reliable, robust and salient characteristics
n capturing the non-linear relationships existing between vari-
bles (multi-input/output) in complex systems, it has become
pparent that numerous applications of ANNs have been
uccessfully conducted in various parts of environmental engi-
eering field in the past decade, such as estimation of lead
oncentration in grasses [6], prediction of the bulking phe-
omenon in wastewater treatment plants [7], prediction of
embrane fouling during nanofiltration of ground and surface
ater [8], assessing of ecosystem quality and community vari-

tions [9], modeling of H2S and NH3 component of biogas
roduced from anaerobic digestion [10], prediction of opti-
um body diameter of air cyclones [11], and predicting single

roplet collection efficiency of countercurrent spray towers
12].

Although a number of investigations have been conducted on
he removal of Pb(II) ion from aqueous solutions using various
dsorbents, every special material needs to be given a particular
ocus for investigation. The present study describes the adsorp-
ion potential of Antep Pistachio (Pistacia Vera L.) shells in
emoval of Pb(II) ions from aqueous solutions. The effects of
arious operational parameters, such as adsorbent dosage, initial
oncentration of Pb(II) ions, initial pH, operating temperature,
nd contact time on Pb(II) adsorption were also investigated.
n the basis of batch adsorption experiments, we proposed a

hree-layer ANN model using a backpropagation (BP) algo-
ithm to predict the Pb(II) removal efficiency of pistachio shells
sed as adsorbent materials in this work. Following benchmark
omparisons of BP algorithms, we conducted an optimization
tudy to determine the optimal network structure. Finally, out-
uts obtained from the ANN modeling were compared with
he experimental data, and advantages and further developments
ere discussed.

. Materials and methods

.1. Preparation of the adsorbent and synthetic wastewater

Antep Pistachio (P. Vera L.) shells used in the batch exper-
ments were collected from lands near to Zohrecik Village
36◦54′N, 37◦52′E) of Gaziantep city in the southeastern part of
urkey. The surface area of the pistachio shells was determined
y single point Brunauer, Emmett and Teller (BET) N2 sorption
rocedure. Elemental analysis was performed with an elemental
nalyzer (EA 1108, Fisons Instruments). True density of pista-

hio shells was determined as outlined by Razavi et al. [13]. The
esults are summarized in Table 1.

Pb(II) analysis was done in raw pistachio shells according to
PA Method 3010 (acid digestion of extracts for total recover-

a
o
m
(

Surface area (m2/g) 0.41

a Oxygen content determined by difference.

ble or dissolved metal analysis by FLAA or ICP spectroscopy).
he result showed that there were no detectable lead levels
resent in raw pistachio shells to have an effect on the batch
xperiment data. This can be attributed to the fact that the lands
ear to Zohrecik Village, where the pistachio shells were col-
ected, are quite away from urban freeways, as well as from
ndustrial areas.

Prior to batch adsorption tests, the shells were washed with
istilled water to remove soluble and coloured components, and
hen dried in an oven (Nuve FN 500) at 80 ◦C for 24 h. The dried
istachio shells were sieved through a 1 mm sieve (Endecotts
td.) and stored in polythene bags.

A stock solution of 1000 ppm of Pb(II) was first prepared by
issolving analytical grade Pb(NO3)2·6H2O (Merck Chemical
orp.) in distilled water. Then, synthetic wastewater samples
ere prepared to give Pb(II) concentrations of 5, 30, 50 and
00 ppm by diluting appropriate amounts of Pb(NO3)2·6H2O
tock solution with distilled water for batch adsorption experi-
ents. The pH of synthetic samples was adjusted by the addition

f 1N NaOH and 1N HCl solutions using a pH meter (WTW
ultiline P4 model).

.2. Batch adsorption tests

Series of batch adsorption experiments were conducted to
etermine the effect of adsorbent dosage, initial concentration
f Pb(II) ions, initial pH, operating temperature, and contact time
n adsorption performance of pistachio shells used as adsorbent
aterials in this study. Therefore, various adsorbent dosages of

.5, 1 and 4 g were introduced into 250 mL flasks with 200 mL
olution containing 5, 30, 50 and 100 ppm of Pb(II) ions. The
asks were then placed in an orbital shaker (Gallenkamp Orbital
ncubator Shaker) and agitated up to a total contact time of
20 min at a fixed agitation speed of 250 rpm. Samples were
aken at predetermined time intervals (5, 20, 45, 60, and 90 min)

nd then separated by centrifugation. Pb(II) ions concentrations
f aqueous phases were analyzed by atomic absorption spectro-
etric procedure using a flame atomic absorption spectrometer

SpectrAA 220 Fast Sequential Atomic Absorption Spectrome-
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Table 2
Data statistics of model variables

Variables Data statistics

Range Mean ± S.D.

Input layer [p]
Adsorbent dosage (g) 0.5–4.0 1.23 ± 0.90
Initial lead concentration (ppm) 5–100 35.91 ± 22.62
Initial pH 2.0–9.0 5.37 ± 1.72
Temperature (◦C) 30–60 35 ± 10
Contact time (min) 5–120 56.67 ± 39.64
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utput layer [t]
Adsorption efficiency (%) 26.45–98.7 84.6 ± 17.11

er, Varian Inc.) with an air–acetylene flame and a hollow catode
amp [14].

Batch experiments were carried out in a pH range of 2.0–9.5
o determine the effect of initial pH on adsorption. Effects of
arious operating temperatures ranging from 30 to 60 ◦C were
lso investigated in batch studies. Temperature adjustments were
onducted in the same orbital shaker. Each experiment was per-
ormed in duplicate to observe the reproducibility and the mean
alue was used for each set of values. Percentage of Pb(II) ions
emoval being the output parameter of the ANN model was con-
idered as a measure of adsorption efficiency of pistachio shells.
he efficiency of adsorption (%) was calculated as follows:

= (C0 − Ce)100/C0 (1)

here C0 and Ce are the initial and the equilibrium Pb(II) con-
entrations of the lead solution, respectively.

.3. Definition of the ANN model

In this study, Neural Network Toolbox V4.0 of MATLAB®

athematical software was used to predict the adsorption effi-
iency. Sixty six experimental sets were used to develop the
NN model. Data statistics of model variables are presented in
able 2.
A three-layer ANN with tangent sigmoid transfer function
tansig) at hidden layer and a linear transfer function (purelin) at
utput layer was used. The data gathered from batch experiments
as divided into input matrix [p] and target matrix [t].

m
a
t
o

able 3
omparison of 11 backpropagation (BP) algorithms with 10 neurons in the hidden la

ackpropagation (BP) algorithms Function

esilient backpropagation (Rprop) trainrp
letcher–Reeves conjugate gradient backpropagation traincgf
olak–Ribiére conjugate gradient backpropagation traincgp
owell–Beale conjugate gradient backpropagation traincgb
evenberg–Marquardt backpropagation trainlm
caled conjugate gradient backpropagation trainscg
FGS quasi-Newton backpropagation trainbfg
ne step secant backpropagation trainoss
atch gradient descent traingd
airable learning rate backpropagation traingdx
atch gradient descent with momentum traingdm

SE, mean squared error; IN, iteration number; R2, correlation coefficient; BLE, bes
dous Materials 153 (2008) 1288–1300

Principal component analysis (PCA) was performed as an
ffective procedure for the determination of input parameters.
e used principal components, which accounted for 99.9%

f the variation were used. It was observed that there was no
edundancy in the data set and size of the transformed data
fter the computation. The PCA analysis was followed by the
ivision of the original data into training, validation and test
ubsets. One fourth of the data was taken for the validation
et, one fourth for the test set and one half for the train-
ng set. Therefore 34, 16 and 16 samples were used for the
raining, validation and test subsets, respectively. The experi-

ental data was loaded into the workspace at random for each
ubset.

In the next step, a number of benchmark comparisons of the
arious training algorithms were performed to select the best
P training algorithm. Following benchmark comparisons, an
ptimization was carried out as an important task between the
euron number and mean squared error (MSE) for the best BP
lgorithm. Then, the three-layer ANN was evaluated by the best
P algorithm for the optimal neuron number at hidden layer.
inally, some analysis of the network response was carried out.
he entire data set was put through the network and a linear

egression between the network outputs and the corresponding
argets was performed.

. Results and discussion

.1. Selection of backpropagation (BP) algorithm

Eleven BP algorithms were compared to select the best suited
P algorithm. For all BP algorithms, a three-layer ANN with a

angent sigmoid transfer function (tansig) at hidden layer and a
inear transfer function (purelin) at output layer were used. 10
eurons were used in the hidden layer for all BP algorithms.
he LMA with a minimum MSE was found as the best of 11 BP

Table 3).
The benchmark comparison showed a loss on the opti-
ality of the estimates/results produced by some BP training
lgorithms. The benchmark comparison study resulted that
he LMA was able to provide smaller MSE compared to
ther BP algorithms such as the resilient backpropagation (RP)

yer

MSE IN R2 BLE

0.123026 20 0.864 y = 0.719x + 23.6
0.16533 14 0.822 y = 0.742x + 20.8
0.148717 18 0.842 y = 0.805x + 15.9
0.159847 13 0.812 y = 0.698x + 25.0
0.000398 11 0.930 y = 0.946x + 4.05
0.142747 19 0.888 y = 0.846x + 12.6
0.072009 16 0.879 y = 0.768x + 19.5
0.185715 20 0.826 y = 0.724x + 22.6
0.618350 100 0.585 y = 0.350x + 55.3
0.656301 38 0.499 y = 0.265x + 62.8
0.557397 100 0.608 y = 0.390x + 51.5

t linear equation.
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lgorithm and conjugate gradient algorithms. As shown in
able 2, the the smallest MSE was obtained about 0.000398
or trainlm function. This was followed by the trainbfg with

MSE of 0.072009. However, both trainrp and conjugate
radient algorithms such as traincgf, traincgp and traincgb
roduced greater error than the LMA. The loss on the opti-
ality of the estimates/results produced by some BP training

lgorithms can be attributed to the combinatorial nature and
on-linear structure of the experimental data. Hence, the com-
lexity analysis of the problem was validated by the results
f the various training algorithms used in the benchmark
omparison.

.2. Optimization of the ANN structure

The optimal architecture of the ANN model and its param-
ter variation were determined based on the minimum value of
he MSE of the training and prediction set. In optimization of
he network, two neurons were used in the hidden layer as an
nitial guess. With an increase in the number of neurons, the
etwork gave several local minimum values and different MSE
alues were obtained for the training set. Fig. 1 illustrates the
ependence between the neuron number and MSE for the LMA
elected as the best BP algorithm.

Fig. 1 depicts that the MSE of the network was much higher
or the 2 (MSE 0.151843) and 3 (MSE 0.0836682) hidden neu-
ons than those with 4 (MSE 0.0441259), 5 (MSE 0.0439643),
nd 6 (MSE 0.0395008). With 7 hidden neurons, the MSE
ecreased significantly from 0.0395008 to 0.00502257. With
further increase in the number of neurons from 7 to 11, a

radual decrease was observed in the MSE. With 11 hidden
eurons, the MSE reached its minimum value of 0.000227875.

ence, the neural network containing 11 hidden neurons (MSE
.000227875) was chosen as the best case. When the number of
eurons exceeded 11, the MSE showed a slight increase from
.000227875 to 0.001100794 at 13 neurons. A further increase

ig. 1. Dependence between MSE and number of neurons at hidden layer for
he LMA.

g
n

o
g
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ig. 2. Training, validation and test mean squared errors for the Levenberg–
arquardt algorithm.

n the number of neurons from 13 to 15 resulted a sharp increase
n the MSE. This increment can be attributed to the characteris-
ics of the MSE performance index and the input vector [p] used
n this study.

The training was stopped after 12 iterations (TRAINLM,
poch 12/100) for the LMA because the differences between

raining error and validation error started to increase. Fig. 2 illus-
rates training, validation and test mean squared errors for the
MA. Finally, the optimal ANN, together with a flowchart of the
P algorithm, is shown in Fig. 3: a three-layer ANN, with tan-
ent sigmoid transfer function (tansig) at hidden layer with 11
eurons and a linear transfer function (purelin) at output layer.

A regression analysis of the network response between ANN
utputs and the corresponding targets was performed. The
raphical output of the network outputs plotted versus the tar-
ets as open circles is illustrated in Fig. 4. Taking into account
he non-linear dependence of the data, linear regression shows a
ood agreement between ANN outputs (predicted data) and the
orresponding targets (experimental data). The best linear fit was
ndicated by a solid red line and R2 is almost 0.94. The perfor-

ance control of ANN outputs was evaluated by estimating the
orrelation coefficient (R2) which is defined as [15]:

2 =
∑N

p=1(tp − tmean)2 − ∑N
p=1(tp − op)2

∑N
p=1(tp − op)2

(2)

here R2 is the correlation coefficient, N is the number of the
atterns, p is the index number for pattern, tp is the target value
or the pth pattern, tmean is the mean target value, op is the out-
ut of the pth pattern which is produced by the ANN model.

est outputs showed a very small deviation in efficiency values
rom the experimental data with an average value of about 3.18
±2.79).
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Fig. 3. Optimal ANN structure, together with a flowchart of

.3. Sensitivity analysis

In this study, a sensitivity analysis was conducted to deter-
ine the degree of effectiveness of a variable using the proposed

NN model. In the analysis, performance evaluation of various
ossible combination of variables were investigated. Therefore,
erformance of the groups of one, two, three, four, and five

ig. 4. The graphical output of the network outputs plotted versus the corre-
ponding targets for the Levenberg–Marquardt algorithm.
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P algorithm for the prediction of the adsorption efficiency.

ariables were tested by the optimal ANN structure using the
MA with 11 hidden neurons. The groups of input vectors were
efined in this form: p1, adsorbent dosage; p2, initial Pb(II) ions
oncentration; p3, initial pH; p4, temperature; and p5, contact
ime. Results of the performance evaluation of 30 combinations
re summarized in Table 4.

Findings of the sensitivity analysis showed that p3 (initial
H) was found to be the most effective parameter, among those
onsidered in the group of one variable. As shown in Table 4,
he MSE value (84.4549) significantly decreased when p3 was
sed in combination with other variables in the subsequent
roup of two variables. The minimum MSE in the group of
wo variables was determined to be 0.123776 with a further
ontribution of p5 (contact time). This was followed by the
ombination of p2 + p3 with a MSE of 0.319334. The MSE
alue become smaller when the combination of p3 + p5, the
est case of group of two variables, was used together with p2
initial Pb(II) ions concentration). The minimum MSE in the
roup of three variables was determined to be 0.0631927 using
he combination of p2 + p3 + p5. With a further contribution of
1 (adsorbent dosage), the MSE (0.0631927) decreased up to
.0382589, which is the minimum value of the group of four vari-
bles. The MSE value significantly decreased from 0.0382589
o 0.000227875 when p4 (temperature) was used in combination
ith other variables in the subsequent group of five variables.
n the basis of the performance evaluation of combinations of

nput variables, best group performances according to number

f parameters are listed in Table 5. The respective MSE val-
es, as given in Table 5 show that MSE values decrease as
he number of variables in the group increases. Furthermore,
t can also be concluded that the relative increase in the perfor-
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Table 4
Performance evaluation of combinations of input variables for the LMA with 11 neurons in the hidden layer for sensitivity analysis

CN Combination MSE R2 IN Gradient BLE

Group of one variable
1 p1 268.505 0.275 10 2.26912 × 10−8 y = 0.0759x + 78.5
2 p2 276.165 0.223 46 2.09286 × 10−5 y = 0.0495x + 80.8
3 p3 84.4549 0.842 12 3.11414 × 10−9 y = 0.709x + 24.7
4 p4 271.692 0.255 11 9.35531 × 10−10 y = 0.0649x + 79.5
5 p5 247.899 0.383 40 1.45941 × 10−11 y = 0.147x + 72.5

Group of two variables
6 p1 + p2 0.884074 0.404 4 1.30657 × 10−12 y = 0.175x + 68.7
7 p1 + p3 0.349342 0.842 8 3.40497 × 10−14 y = 0.673x + 25.9
8 p1 + p4 0.870325 0.428 6 2.26993 × 10−10 y = 0.201x + 65.7
9 p1 + p5 0.744235 0.352 10 7.87679 × 10−14 y = 0.235x + 66.2

10 p2 + p3 0.319334 0.861 6 1.80863 × 10−13 y = 0.749x + 19.2
11 p2 + p4 0.925674 0.378 4 3.74868 × 10−12 y = 0.152x + 69.9
12 p2 + p5 0.776596 0.349 8 9.87304 × 10−12 y = 0.154x + 69.5
13 p3 + p4 0.355586 0.844 6 3.02331 × 10−11 y = 0.678x + 25.4
14 p3 + p5 0.123776 0.869 8 3.07023 × 10−14 y = 0.886x + 10.6
15 p4 + p5 0.77764 0.433 6 1.50819 × 10−13 y = 0.219x + 65.9

Group of three variables
16 p1 + p2 + p3 0.307253 0.862 8 7.86722 × 10−15 y = 0.767x + 17.6
17 p1 + p2 + p4 0.669317 0.567 6 3.40328 × 10−13 y = 0.338x + 56.6
18 p1 + p2 + p5 0.623037 0.521 10 4.91802 × 10−8 y = 0.359x + 55.6
19 p1 + p3 + p4 0.331596 0.851 17 2.52168 × 10−14 y = 0.745x + 19.5
20 p1 + p4 + p5 0.616612 0.529 10 8.56887 × 10−8 y = 0.352x + 56.1
21 p2 + p3 + p4 0.313675 0.863 9 7.80873 × 10−12 y = 0.764x + 17.8
22 p2 + p3 + p5 0.0631927 0.921 13 3.95446 × 10−14 y = 0.804x + 16.6
23 p2 + p4 + p5 0.673288 0.528 7 1.45395 × 10−11 y = 0.280x + 60.8
24 p3 + p4 + p5 0.109178 0.896 12 4.90824 × 10−14 y = 0.863x + 11.5

Group of four variables
25 p1 + p2 + p3 + p4 0.28744 0.865 12 6.6532 × 10−9 y = 0.740x + 20.4
26 p1 + p2 + p3 + p5 0.0382589 0.922 11 7.62405 × 10−8 y = 0.845x + 12.2
27 p1 + p2 + p4 + p5 0.40297 0.687 13 1.0443 × 10−13 y = 0.502x + 43.8
28 p1 + p3 + p4 + p5 0.0710054 0.843 14 2.85766 × 10−9 y = 0.744x + 20.6
29 p2 + p3 + p4 + p5 0.0525177 0.904 13 1.21999 × 10−9 y = 0.855x + 10.9

Group of five variables
3 0.9 −10

C lation
i .

m
o

3

t
o

a
d
c
r

T
B

C

1
2
2
3

C
i

0 p1 + p2 + p3 + p4 + p5 0.000227875

N, combination no; MSE, mean squared error; IN, iteration number; R2, corre
nitial Pb(II) ions concentration; p3, initial pH; p4, temperature; p5, contact time

ance due to inclusions of p5 is larger than the contribution of
thers.

.4. Effect of initial pH on the adsorption efficiency
The pH of a suspension is an important factor that can affect
he form and the quantity of Pb(II) in water, the form and quantity
f a mineral’s surface sites, and the interaction of the mineral

t
t
w

able 5
est group performances according to number of parameters

N Combination MSE R2

3 p3 84.4549 0.8
4 p3 + p5 0.123776 0.8
2 p2 + p3 + p5 0.0631927 0.9
6 p1 + p2 + p3 + p5 0.0382589 0.9
0 p1 + p2 + p3 + p4 + p5 0.000227875 0.9

N, combination no; MSE, mean squared error; IN, iteration number; R2, correlation
nitial Pb(II) ions concentration; p3, initial pH; p4, temperature; p5, contact time.
36 12 0.466008 × 10 y = 0.896x + 8.46

coefficient; BLE, best linear equation; INF, infinity; p1, adsorbent dosage; p2,

nd Pb(II) [16]. Effect of initial solution pH on adsorption was
etermined by mixing 1.0 g of adsorbent with 200 mL of solution
ontaining Pb(II) concentration of 30 ppm at various pH values
anging from 2.0 to 9.5.
Findings of batch experiments showed that the initial pH of
he solution was found to be an important parameter affecting
he adsorption performance. Percentage of Pb(II) ions removal
as relatively low at pH 2.0 compared to higher pH values.

IN Gradient BLE

42 12 3.11414 × 10−9 y = 0.709x + 24.7
69 8 3.07023 × 10−14 y = 0.886x + 10.6
21 13 3.95446 × 10−14 y = 0.804x + 16.6
22 11 7.62405 × 10−8 y = 0.845x + 12.2
36 12 0.466008 × 10−10 y = 0.896x + 8.46

coefficient; BLE, best linear equation; INF, infinity; p1, adsorbent dosage; p2,
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his can be attributed to the fact that a high concentration of H+

ons compete with Pb(II) for active sites at low pH (≤2.0), with
n apparent preponderance of H+ ions, resulting in the supres-
ion of Pb(II) adsorption on the surface of pistacho shells [17].
herefore, increasing the initial concentration of proton in aque-
us solutions resulted in the decrease of Pb(II) removal. Chen
nd Wang [16] and Inglezakis et al. [18] observed similar phe-
omena in removal of Pb(II) ions from aqueous solutions using
alygorskite clay and natural minerals, respectively.

At pH 9.5, a moderate efficiency of Pb(II) ions removal was
bserved with a maximum value of 88.8% for 120 min of contact
ime. Experimental results showed that adsorption of Pb(II) ions
ecreased when the pH was high (>7.0). This can be ascribed
hat high pH conditions reduce the mobility of Pb(II) due to the
ecrease in the exchangeable form, resulting in a decrease in
he contact probability between adsorbent and adsorbate [16].
t high pH values (pH 9.5), no interference of lead hydroxide
recipitation was observed in this study.

A similar trend was observed for pH 3.5 and pH 5.5 on Pb(II)
dsorption. The maximum efficiency of Pb(II) ions removal was
ound to be 95.1% at pH 3.5 for a total contact time of 90 min. For
he same agitation period, the efficiency of Pb(II) ions removal

as found to be about 93.8% at pH 5.5. However, percentage
f Pb(II) ions removal decreased from 95.1 to 89.3% at pH 3.5
hen the contact time was decreased from 90 to 45 min. For the

ame decrease in contact time at pH 5.5, a negligible decrease

s
r
[
t

initial pH (adsorbent dosage = 1.0 g, initial lead concentration = 30 ppm, and

rom 93.8 to 93.2% was observed in the efficiency of Pb(II) ions
emoval. Taking into account the cost of energy consumed in
gitation, pH 5.5 was found as the optimal initial pH for further
atch experiments investigating the effects of other operational
arameters on the efficiency of Pb(II) ions removal. The agree-
ent between the ANN model predictions and the experimental

ata as a function of initial pH is shown in Fig. 5. From this
lot it can be seen that obtained results from the proposed ANN
odel are in good agreement with the experimental data.

.5. Effect of adsorbent dosage on the adsorption efficiency

Adsorbent dosage is an important parameter because this
etermines the capacity of an adsorbent for a given initial con-
entration of the adsorbate [19]. Effect of adsorbent dosage on
dsorption was determined by mixing 200 mL of solution con-
aining Pb(II) concentration of 30 ppm with various adsorbent
osages ranging from 0.5 to 4.0 g at an initial pH of 5.5.

Experimental results generally showed that as the adsorbent
ass increased from 0.5 to 1.0 g, the percentage of Pb(II) ions

emoved also increased up to a total contact time of 45 min.
his can be attributed to the fact that the number of adsorption

ites or surface area increases with the weight of adsorbent,
esulting in a higher percent of metal removal at a high dose
3]. However, a further increase in the adsorbent mass from 1.0
o 4.0 g, did not yield a significant difference in the efficiency
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f Pb(II) ions removal after a total contact time of 20 min,
asically due to reaching the equilibrium adsorption capacity
t higher adsorbent dosage.

The maximum efficiency of Pb(II) ions removal was found to
e 98.7% with an adsorbent dosage of 0.5 g for 120 min of con-
act time. Batch experiments resulted that the effect of adsorbent
osage on the percentage of Pb(II) ions removal was negligi-
le after 45 min of contact time. For a total agitation period of
5 min, no striking differences in the efficiency of Pb(II) ions
emoval were observed for adsorbent dosages of 1.0 and 4.0 g.
he percentage of Pb(II) adsorbed was obtained to be about
3.2% with an adsorbent dosage of 1.0 g for 45 min of contact
ime. Almost 95% of Pb(II) ions removal was found with adsor-
ent dosages of 0.5 and 4.0 g for a total contact time of 60 min.
owever, the cost of energy consumed in agitation was appar-

ntly high for the second choice. For shorter contact times, high
fficiency values were obtained at high adsorbent dosages. How-
ver, high amounts of adsorbent were needed in this case. Both
aking into account the mass of adsorbent required and the cost
f energy consumed in agitation, 1.0 g of adsorbent dosage was
elected as the optimal dosage for further batch experiments.
ig. 6 shows a comparison between the ANN model predictions
nd the experimental data as a function of adsorbent dosage. It
an be seen that the ANN model satisfactorily predicts the trend
f the experimental data.

.6. Effect of initial concentration of Pb(II) ions on the
dsorption efficiency

Effect of initial concentration of Pb(II) ions on adsorption
as determined by mixing 1.0 g of adsorbent with 200 mL of

olution containing various Pb(II) concentrations ranging from
to 100 ppm at an initial pH of 5.5.
Batch experiments apparently showed that the percentage of

b(II) ions removal increased when the initial concentration of
b(II) ions per 200 mL of solution was increased from 5 to
0 ppm for each agitation period. However, a small decrease
as observed in the percentage of Pb(II) ions removal for the

olution containing 100 ppm of Pb(II) ions. This was basically
ue to the saturation of adsorbent above an initial Pb(II) ions
oncentration of 50 ppm.

Adsorption characteristics indicated that percentage of Pb(II)
ons removal was fairly dependent on the initial concentration
f Pb(II) ions. Horsfall and Spiff [20] reported that adsorption
ites take up available metal more quickly at low concentra-
ions. However, at high concentrations metals need to diffuse
o the adsorbent surface by intraparticle diffusion and greatly
ydrolyzed ions will diffuse at a slower rate. Experimental
esults showed that the adsorption process reached equilibrium
n about 45 min of agitation period for all initial concentra-
ions of Pb(II) ions in this study. However, for initial Pb(II) ions
oncentrations of 30, 50 and 100 ppm, adsorption equilibrium
ercentages were determined to be higher than the initial Pb(II)

ons concentration of 5 ppm. For initial Pb(II) ions concentra-
ions of 30, 50 and 100 ppm, results indicated that there were
o significant differences in the removal efficiency after desired
ime. Hence, 30 ppm of Pb(II) ions concentration was selected as

T
i
c
p

ig. 6. Agreement between ANN outputs and experimental data as a function
f adsorbent dosage (initial pH = 5.5, initial lead concentration = 30 ppm, and
emperature = 30 ◦C).

he optimal initial concentration for further batch experiments.

he experimental data and ANN calculated outputs for various

nitial Pb(II) ions concentration values are shown in Fig. 7. It
an be seen that the ANN model shows a good performance on
rediction of the experimental data.
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.7. Effect of temperature on the adsorption efficiency

Effect of temperature on the adsorption of Pb(II) ions onto
istachio shells was studied by mixing 1.0 g of adsorbent
ith 200 mL of solution containing Pb(II) concentration of
0 ppm at pH 5.5 for temperature values ranging from 30 to
0 ◦C.

Experimental results showed that adsorption of Pb(II) ions
nto pistachio shells was fairly dependent on the tempera-
ure until the contact time of 45 min. The adsorption of Pb(II)
nto pistachio shells increased up to about 98.1%, when the
emperature was increased from 30 to 50 ◦C. However, the

agnitude of such an increase continued to decline as the tem-
erature was increased from 50 to 60 ◦C. This can be attributed
o the fact that the attractive forces between adsorbent sur-
ace and metal ions are weakened and the adsorption decreases
bove a certain temperature threshold [21]. Similarly, Aksu and
utsal [22] commented on that the thickness of the bound-

ry layer decreases at relatively high temperatures, due to the
ncreased tendency of the metal ion to escape from the adsor-
ent surface to the solution phase, which results in a decrease in
dsorption.
The ambient temperature was about 30 ◦C during the spring
eason when the batch experiments were carried out. We con-
ucted additional heating to investigate the effect of temperature
n the adsorption of Pb(II) ions for temperatures above the

c
t
(
r

al lead concentration (adsorbent dosage = 1.0 g, initial pH 5.5, and temperature

mbient temperature. However, no significant differences in the
fficiency of Pb(II) ions removal were observed depending on
he temperature above 45 min of agitation period. Therefore,
oth taking into account the cost of energy consumed in heat-
ng and the magnitude of such a decrease in the adsorption of
b(II) ions at high temperature, an operating temperature of
0 ◦C (ambient conditions) was generally found to be sufficient
or further batch experiments. The agreement between the ANN
odel predictions and the experimental data as a function of

perating temperature is depicted in Fig. 8. From this plot it can
e seen that there is a good agreement between predictions of
he ANN model and the experimental data.

.8. Effect of contact time on the adsorption efficiency

The batch experimental data obtained from the adsorption
f Pb(II) ions onto the pistachio shells showed that a contact
ime of 45 min was generally sufficient to achieve equilibrium
nd the adsorption did not change significantly with further
ncrease in contact time. In some cases, equilibrium was almost
ttained in 5 or 20 min, depending on the values of operat-
ng variables. These results indicate that the adsorption process

an be considered very fast. To summarize, taking into account
he cost of energy consumed in agitation, longer contact times
>45 min) unnecessarily prolonged the process to obtain similar
esult.
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lignite, bagasse pith, wood, saw dust, etc. have attracted the
ion of temperature (adsorbent dosage = 1.0 g, initial pH 5.5, and initial lead
oncentration = 30 ppm).

.9. Comparisons with literature data
Table 6 summarizes performance data concerning the com-
arison of batch experiments conducted with various materials

a

a
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nd operating conditions on removal of Pb(II) ions from aqueous
olutions. The performance data figures out that a wide range of
perating conditions have been conducted in removal of Pb(II)
ons using low-cost materials. On the basis of maximum Pb(II)
emovals, the present data seems to be in agreement with those
eported by others. The performance data shows that optimum
nitial pH has been investigated between 2 and 12. Effect of vari-
us amounts of sample materials, ranging from 0.01 to 4.0 g have
een examined. Most of studies, including the present study,
ave been carried out at an operating temperature above 20 ◦C.

wide range of contact time, from 1 min to 120 h (5 days),
as been studied at various agitation speeds up to 3500 rpm.
erformance data obviously indicated that the removal of Pb(II)

ons from aqueous solutions could be effectively improved up to
bout 100% by using low-cost sample materials [18,23,30,31].
ifferences in performances can be attributed to the different

haracteristics and amounts of sample materials, initial pH of
olutions, concentration of Pb(II) ions, operating temperatures
nd also contact times.

In this study, the adsorption data were also described by well-
nown Freundlich and Langmuir isoterms models as a function
f equilibrium Pb(II) concentration (Ce) and the corresponding
quilibrium adsorption capacity (qe). Results showed that the
angmuir model represented the adsorption process better than

he Freundlich model, and the maximum adsorption capacity of
he pistachio shell in Pb(II) removal was found to be 27.1 mg/g.

aximum adsorption capacities (q0) obtained for adsorption
f Pb(II) onto other materials as low cost adsorbents reported
n the literature are listed in Table 7. As seen from Table 7,
istachio shell is a better adsorbent compared to some of low
ost adsorbents reported by others. This result indicates that the
tudied pistachio shell possesses a good adsorption capacity, so
hat this material can be useful in removing Pb(II) from aqueous
olutions. Higher values of q0 have also been reported by some
orkers. However it should be noted that differences are due

o the properties of each adsorbent such as structure, functional
roups and surface area.

.10. Economical discussion

The removal of heavy metals from water and wastewater has
ecently become the subject of considerable interest due to more
trict legislations introduced in many countries to control water
ollution [3]. Precipitation of heavy metals the metal hydroxides
r sulfides has been practiced as the prime method of treatment
or heavy metals in industrial wastewater for many years. How-
ver, this process leads to a special problem of sludge handling
nd costly disposal. Although membrane filtration and electro-
hemical process are proven techniques, their high costs limit
heir use in pratice. Similarly, activated carbon is regarded as an
ffective adsorbent for removal of metal ions from water [39,40].
owever, due to its high cost and about 10–15% loss dur-

ng regeneration, unconventional adsorbents like fly ash, peat,
ttention of several investigations [41].
The pistachio shell used as an adsorbent in this study is an

gricultural by-product produced in very large quantities partic-
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Table 6
Comparison of batch experiments conducted with various materials and operating conditions for removal of Pb(II) ions from aqueous solutions

Material Range of operating parameters and maximum removals Reference and
region

Initial pH Material dosage (g) Initial Pb(II) concen-
tration (ppm, mg/L,
meq/L or mM)

Temperature
(◦C)

Contact time
(min or h)

Agitation
speed (rpm)

Maximum
removal (%)

Antep pistachio shells (Pistachia Vera L.) 2.0–9.5 0.5–4.0 5–100 ppm 30–60 5–120 min 250 Up to 99 Present study,
Turkey

Clinoptilolite and bentonite (clay) 4.0 2.0 1.036 ppm 28–60 1–120 min 0–500 Up to 100 Inglezakis et al.
[18] Greece

Modified alginic acid (MMA) 5.81 0.6 297 mg/L Room
temp.

10–180 min NS Up to 100 Jeon et al. [23],
Korea

Washed biomass (dry basis) 3.6–9.0 1.1–5.5 25–150 mg/L 30 16–72 h 120 96 Ray et. al. [24],
India

Mexican clinoptilolite 4.0–12.0 1.5 15–30 meq/L 25 18 h 30 >97 Vaca-Mier et al.
[25], Mexico

Tree leaves 5.42 2.0 49 mg/L Room
temp.

2 h 300 96 Adeyiga et al.
[26], Virginia

Phosphatic clay 2.0–8.0 0.5 50 mg/L 25 ± 3 Up to 120 h 30 ± 1 Up to 99 Singh et al. [27],
USA

Kaolinite clay 2.0–8.0 0.1 3.4 mg/L 25 10–90 min 3500 85 Kamel et al.
[28], Egypt

Modifed clay 5.5 ± 0.01 1.0 50–1500 ppm 23 24 h 10 93 Park and Shin
[29], Korea

Natural goethite 3.0–5.0 1.0 5–750 ppm 27 ± 1 8 h 120 Up to 100 Abdus-Salam
and Adekola
[30], Nigeria

Waste brewery biomass 4.5–8.0 0.95–1.2 0.1–1.0 mM 30 96 h 150 Up to 100 Marques et al.
[31], Portugal

Peat moss 3.0–6.0 0.01–0.06 10 mg/L 23 ± 1 5–180 min 125 95.5 Akinbiyi [32],
Regina

NS, not specified.
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Table 7
Maximum adsorption capacities (q0) obtained for adsorption of Pb(II) onto
various adsorbents (Langmuir isoterm model)

Adsorbent q0 (mg/g) Reference and
region

Antep pistachio shells 27.1 Present study, Turkey
Saw dust 3 Shukla et al. [33], USA
Tree barks 21 Martin-Dupoint et al. [34], France
Tea waste 65 Amarasinghe and Williams [3], UK
Rice husk 11 Chuah et al. [35], Malaysia
Sago waste 47 Quek et al. [36], Birmingham
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aolinite 11.52 Gupta and Bhattacharyya [37], India
offee residue 20 Boonamnuayvitaya et al. [38], Thailand

larly in the southeastern part of Turkey. The main advantages
f Pb(II) removal by using pistachio shells is that it is in abun-
ance and easy availability. This makes it a strong choice in the
nvestigation of an economic way of Pb(II) removal. From the
conomical point of view, pistachio shells can be used as an
lternative media to activated carbon, to gain an understanding
f the adsorption process.

Further investigations may be needed for desorption studies,
conomically feasible regeneration of the adsorbent and appli-
ation of the adsorbent for real industrial wastewater. However,
n many parts of the world where pistachio shells are available at
o cost, regeneration is not required and the metal laden biomass
an be disposed by incineration. The remaining ash after incin-
ration will be highly enriched with lead and has to be ultimately
isposed of in a secure landfill [32]. Consequently, acceptance of
istachio shell as a sustainable, low-cost, and renewable resource
s expected to contribute to its universal appeal for removal
f Pb(II) from aqueous solutions, particularly for the needs of
eveloping countries.

. Conclusions

The pistachio shell used as a low-cost adsorbent showed a
ood adsorption performance for removal of Pb(II) ions from
queous solutions. The effect of various operational parameters
n the adsorption of Pb(II) ions onto pistachio shells was inves-
igated and optimized. Batch adsorption experiments showed
hat optimal operating conditions were determined to be an ini-
ial pH of 5.5, an adsorbent dosage of 1.0 g, an initial Pb(II)
oncentration of 30 ppm, and a temperature of 30 ◦C. A contact
ime of 45 min was found to be sufficient to achieve equilib-
ium. Findings of the experimental study clearly indicated that
he removal of Pb(II) ions from aqueous solutions could be effec-
ively improved up to about 99% by using pistachio shells. The

aximum adsorption capacity of the pistachio shell in Pb(II)
emoval was found to be 27.1 mg/g.

On the basis of batch adsorption experiments, an important
bjective was to obtain an ANN model that could make reliable
rediction on the percentage of Pb(II) ions removal. A three-

ayer ANN with a tangent sigmoid transfer function (tansig)
t hidden layer and a linear transfer function (purelin) at out-
ut layer were proposed to predict the efficiency of Pb(II) ions
emoval. The benchmark comparisons conducted with 10 hidden

[

dous Materials 153 (2008) 1288–1300 1299

eurons resulted that the LMA was able to provide smaller MSE
ompared to other 11 BP algorithms with a MSE of 0.000398.
he optimal neuron number for the LMA was determined to be
1 hidden neurons with MSE of 0.000227875. The proposed
NN model showed a precise and an effective prediction of

he experimental data with a satisfactory correlation coefficient
f 0.936 for five operating variables. The sensitivity analysis
howed that MSE values decreased as the number of variables
sed in the ANN model increased. The relative increases in the
erformance due to inclusions of p5 (contact time) was found to
e larger than the contribution of others. To conclude, a simula-
ion based on the ANN model can provide a further contribution
o develop a better understanding of the dynamic behaviour of
rocess where still some phenomena cannot be explained in all
etail.
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